Zhang: IS 441 SQL Handout 1 - GROUP BY; ORDER BY; Column Alias; Boolean operators

[bookmark: _GoBack]IS 441 SQL Handout 1 – Points to Watch in SQL Basics, Version 4
Dr. Yue “Jeff” Zhang, October 23, 2016

This handout does not attempt to systematically cover all the basic points of the SQL syntax and basic usage. Instead, it aims at providing clarification and deeper understanding of several keep concepts/skills that are important and that have appeared to be error-prone in the past.
=========================
****PLEASE study all four materials:****
1. This handout; 2. The password-protected handout “SQL_Handout_pswd”; 3. PPT slides; 4. Textbook.
=========================
The following are the main topics calling for special attention: 1. Column alias; 2. Caution on parentheses; 3. Sorting with ORDER BY; 4. GROUP BY, with WHERE or HAVING or both.

1. Using Column Alias
Column alias can be designated as the column header of the query output. Please note: The column alias is only for the display of the output; it cannot participate in operations in the SQL commands. Examples:
	Right
	Wrong

	SELECT product_finish, avg(standard_price) as [Average price]
FROM PRODUCT_t
GROUP BY product_finish
HAVING avg(standard_price) > 250;
	SELECT product_finish, avg(standard_price) as [Average price]Not work

FROM PRODUCT_t
GROUP BY product_finish
HAVING [Average price] > 250;

	avg(standard_price) is legitimate SQL function; can be used anywhere
	Average price is only for display but not for Boolean operation

2. Watch Your Parentheses
The precedence of logical operation is NOT – AND – OR. If you must change that precedence, you need to use parentheses - correctly.
Use parentheses if you must break the “natural” precedence of NOT, AND, and OR;
Do NOT use parentheses if adding parentheses would change the logic that you intended.

Example:
	SELECT Major, LName, GPA
FROM STUD
WHERE
Major <> “Acct” AND GPA >=3.5 OR GPA <= 2.0
	1. The non-accounting majors;
2. Non-ACCT majors whose GPA >= 3.5
3. Or: ANYONE (major doesn’t matter) GPA <= 2.0
The logic “flows” in the sequence as each part is mentioned, since they happen to agree w the precedence of NOT-AND-OR

	SELECT Major, LName, GPA
FROM STUD
WHERE
Major <> “Acct” AND (GPA >=3.5 OR GPA <= 2.0)
	1. The non-accounting majors;
2. Non-ACCT majors (whose GPA >= 3.5 or whose GPA <= 2.0) – compare point “2” here with “2” and “3” above
Logical sequence altered by the parentheses.

	SELECT Major, LName, GPA
FROM STUD
WHERE
Major <> “Acct” OR GPA >=2.0 AND GPA <= 3.5
	1. The non-accounting majors;
2. ALL majors whose GPA between 2.0 and 3.5 (inclusive);
3. EITHER “1” OR “2” will be selected
The blue portion was processed before OR, since they are joined by AND.

When you hesitate on the NOT/AND/OR and with or without parentheses, you may come back to visit these examples; hopefully they can help you to clarify your thinking and make the right judgment.

** Same caution regarding parentheses applies to your mathematical expressions in SQL:
Use parentheses if you must break the “natural” precedence of - power, X or ÷, + or -;
Do NOT use parentheses if adding parentheses would change the logic that you intended.

3. Sorting: ORDER BY and its use
Note: Key word is ORDER! There’s not a word “sort”!

Sorting in SQL is accomplished by using
ORDER BY field_list
When there are multiple fields that are ordered upon, the first in the list is the primary sort field, and the second the secondary sort field, and so on. SQL will first sort the resulted records by the primary sort field; then in the resulted list (already sorted on the primary sort field) records WITHIN the subgroup (whose members have the same value of the primary sort field) will be further sorted by the secondary sort field (again, that is WITHIN EACH GROUP in the result of the primary sort).

Example: Members first sorted by Major would be then further sorted by GPA, *IF* they are of the same Major (within the same group of Major); then by name *IF* some of them have the same Major & GPA.

SELECT S_LName, Major, GPA
FROM STUDENT
ORDER BY Major, GPA DESC, S_LName;
The following is a likely outcome:

	1. Primary sort: by majors - Acct then BLAW then … Mgmt… SOM
	2. Secondary sort: “GPA DESC”
	3. Tertiary sort: LName
	

	within Acct:
4.0 3.9 3.8,
descending on GPA
	Major
	GPA
	S_LName
	

	
	Acct
	4.0
	Smith
	
GPA 3.9: by S_LName – B then C

	
	Acct
	3.9
	Baker
	

	
	Acct
	3.9
	Chen
	

	
	Acct
	3.8
	Adams
	

	Within Mgmt:
4.0 3.3
	Mgmt
	4.0
	Miller
	

	
	Mgmt
	3.3
	Gonzalez
	GPA 3.3: by S_LName – G then O

	
	Mgmt
	3.3
	Owens
	

	
	1st sort
	2nd sort
	3rd sort
	

4. GROUP BY with HAVING, as compared to WHERE

HAVING imposes conditions on groups, while vs
WHERE… GROUP BY…
GROUP BY… HAVING…

WHERE imposes conditions on individual records.

There are three cases that we need to distinct the two:
A. Both can work and produce the same final outputs;
B. Both can work BUT produce DIFFERENT final outputs;
C. Only HAVING works; WHERE does not work

Use the STUDENT table as an example.

Case A: Both can work and produce the same final outputs
	SELECT Major, AVG(GPA) FROM STUDENT

	WHERE Major = ‘Acct’
GROUP BY Major
	GROUP BY Major
HAVING Major = ‘Acct’

	Note: Condition on rows
	Note: Condition on groups

	Output: The AVG(GPA) of 1,000+ Acct students, from our 7,000+ students; BUT with –
different processing:

	First find those whose Major is Acct (due to WHERE-clause)
	Got 1,000+ records
	First group all 7,000 students by their majors,

	got 10 groups (assuming we have 10 majors in the College)

	Then find their AVG(GPA),

	Got 1 AVG(GPA) value
	Then find the AVG(GPA) for all groups,
	Got 10 AVG(GPA) values

	
	
	Then choose from the 10 groups and 10 GPAs the group whose Major is “Acct”,
	Got that 1 AVG(GPA)

	Display the Major (“Acct”) and the AVG(GPA) value for that major

Case B: Both can work BUT will produce DIFFERENT final outputs

Explanation next page

	SELECT Major, AVG(GPA) FROM STUDENT

	WHERE GPA >= 3.5
GROUP BY Major
	GROUP BY Major
HAVING AVG(GPA) >= 3.5

	Output: The AVG(GPA) from our 10 majors, BUT with different values:

	First find those students whose GPA is 3.5 or higher – the “high-performer subset”
	Got, say, 200+ records - “high-performers”
	First group all 7,000 students by their majors – the “population groups” (not “high-performer groups”)

	got 10 groups (assuming we have 10 majors in the College)

	Then group them
	Got 10 groups – by Major
	Then find the AVG(GPA) for all groups,
	Got 10 AVG(GPA) values

	Then find their AVG(GPA),

	Got 10 (ten) AVG(GPA) values
	Then choose from the 10 groups those groups whose AVG(GPA) is 3.5 or higher
	Got several
(may be <10!!) AVG(GPA) values

	1. These AVGs are from those who are already 3.5 or higher – the “high-performer subset”;
2. All majors will appear, because we can reasonably assume that every major has students whose GPA is 3.5 or higher, who were selected in the WHERE clause to participate in the AVG stage.
	1. These AVGs are from the “general population”, so the participating GPAs here can be from 0 to 4;

2. It is likely that not all majors would appear, since there is no guarantee that every major’s average GPA would be 3.5 or higher – here we display ONLY those majors (say Acct) whose AVG(GPA) is 3.5 or higher;

	3. These 10 AVG(GPA)s are higher than those obtained from the right, because they are based on individual GPAs which are already AT LEAST 3.5; so after AVG those AVGs are certainly >3.5 – NOT just “=”, but surly “>”.
	3. The AVG(GPA)s here are based on participating GPAs from 0 to 4 (compare: those on LEFT were 3.5 to 4). So the AVG(GPA)s here are lower than those on the left, with some possibly only at the threshold 3.5.
AND, very likely the AVG(GPA)s obtain would be <10.

Case C. Only HAVING works; WHERE does not work

	SELECT Major, COUNT(SID) FROM STUDENT

	WHERE does not work, because it only works on individual records but not groups, hence it can NOT handle group characters such as the COUNT of members in groups.
	GROUP BY Major
HAVING COUNT(SID) >= 300

	
	First group all 7,000 students by their majors,
	got 10 groups (assuming we have 10 majors in the College)

	
	Then COUNT the SID for all groups,
	Got ten counts, say 1200, 180, 600, …

	
	Then “filter” with the condition “count of the members in the group >=300”
	Got, say, six majors that have at least 300 students

	
	Display the results:
· The few (not all!!) majors that have at least 300 students (“GROUP BY Major HAVING COUNT(SID) >= 300” gives the number of students in a major), AND –
· The number of students (“COUNT”) in each of those majors.
· Note: WHERE does NOT work with COUNT, SUM, AVG, etc.

© 2014-2020 Yüe “Jeff” Zhang, CSU-Northridge 1

Zhang: IS 441 SQL Handout 1

-

GROUP BY; ORDER BY; Column Alias; Boolean operators

© 2014

-

2020

Yüe “Jeff” Zhang, CSU

-

Northridge

1

IS 441 SQL Handout

1

–

Points to Watch in

SQL Basics

, Version

4

Dr. Yue “Jeff” Zhang,

October 23

, 2016

This handout does not attempt to systematically cover all the basic points of the SQL syntax and basic

usage. Instead, it aims at providing clarification and

deeper

understanding of several keep

concepts

/skills

that are important and that have appeared to

be

error

-

prone

in the past.

=========================

PLEASE study

all

four materials

:

1. This handout; 2. The password

-

protected handout “SQL_Handout_pswd”; 3. PPT

slides

; 4. Textbook.

=========================

The following are the main topics ca

lling for special attention:

1. Column alias; 2. Caution on

parentheses; 3

. Sorting

with ORDER BY

;

4. GROUP BY, with WHERE or HAVING or both.

1

. Using Column Alias

Column alias

can be designated

as the column header

of the query output. Please note: The

column alias

is

only for the display of the output

; it cannot participate in operations in the SQL commands. Examples:

Right

Wrong

SELECT product_finish, avg(standard_price) as

[Average price]

FROM PRODUCT_t

GROUP BY product_finish

HAVING

avg(standard_price)

> 250;

SELECT product_finish, avg(standard_price) as

[Average price]

FROM PRODUCT_t

GROUP BY product_finish

HAVING

[

A

verage price]

> 250;

avg(standard_price)

is legitimate SQL function;

can be used anywhere

A

verage price

is

only for display

but not for

Boolean operation

2

. Watch Your Parentheses

The precedence of logical operation is NOT

–

AND

–

OR. If you must change that precedence, you need

to use parentheses

-

correctly

.

Use parentheses

if you must break the “natural” precedence of NOT, AND, and OR;

Do NOT use parentheses

if adding parentheses would change the logic that you intended.

Example:

SELECT Major, LName, GPA

FROM STUD

WHERE

Major <> “Acct” AND GPA >=3.5 OR

GPA <= 2.0

1.

The

non

-

accounting majors;

2.

Non

-

ACCT majors whose GPA >= 3.5

3.

Or:

ANYONE (major doesn’t matter)

GPA <=

2.0

The logic “flows” in the sequence as each part is

mentioned, since they happen to

agree w the

precedence of NOT

-

AND

-

OR

SELECT Major, LName, GPA

FROM STUD

WHERE

Major <> “Acct”

AND

(

GPA >=3.5 OR GPA <= 2.0

)

1.

The non

-

accounting majors;

2.

Non

-

ACCT

majors

(

whose GPA >= 3.5 or

whose GPA <= 2.0

)

–

compare point “2” here

with “2” and “3” above

Logical sequence

altered by the parentheses

.

Not work

Zhang: IS 441 SQL Handout 1 - GROUP BY; ORDER BY; Column Alias; Boolean operators

© 2014-2020 Yüe “Jeff” Zhang, CSU-Northridge

1

IS 441 SQL Handout 1 – Points to Watch in SQL Basics, Version 4

Dr. Yue “Jeff” Zhang, October 23, 2016

This handout does not attempt to systematically cover all the basic points of the SQL syntax and basic

usage. Instead, it aims at providing clarification and deeper understanding of several keep

concepts/skills that are important and that have appeared to be error-prone in the past.

=========================

****PLEASE study all four materials:****

1. This handout; 2. The password-protected handout “SQL_Handout_pswd”; 3. PPT slides; 4. Textbook.

=========================

The following are the main topics calling for special attention: 1. Column alias; 2. Caution on

parentheses; 3. Sorting with ORDER BY; 4. GROUP BY, with WHERE or HAVING or both.

1. Using Column Alias

Column alias can be designated as the column header of the query output. Please note: The column alias

is only for the display of the output; it cannot participate in operations in the SQL commands. Examples:

Right Wrong

SELECT product_finish, avg(standard_price) as

[Average price]

FROM PRODUCT_t

GROUP BY product_finish

HAVING avg(standard_price) > 250;

SELECT product_finish, avg(standard_price) as

[Average price]

FROM PRODUCT_t

GROUP BY product_finish

HAVING [Average price] > 250;

avg(standard_price) is legitimate SQL function;

can be used anywhere

Average price is only for display but not for

Boolean operation

2. Watch Your Parentheses

The precedence of logical operation is NOT – AND – OR. If you must change that precedence, you need

to use parentheses - correctly.

Use parentheses if you must break the “natural” precedence of NOT, AND, and OR;

Do NOT use parentheses if adding parentheses would change the logic that you intended.

Example:

SELECT Major, LName, GPA

FROM STUD

WHERE

Major <> “Acct” AND GPA >=3.5 OR GPA <= 2.0

1. The non-accounting majors;

2. Non-ACCT majors whose GPA >= 3.5

3. Or: ANYONE (major doesn’t matter) GPA <=

2.0

The logic “flows” in the sequence as each part is

mentioned, since they happen to agree w the

precedence of NOT-AND-OR

SELECT Major, LName, GPA

FROM STUD

WHERE

Major <> “Acct” AND (GPA >=3.5 OR GPA <= 2.0)

1. The non-accounting majors;

2. Non-ACCT majors (whose GPA >= 3.5 or

whose GPA <= 2.0) – compare point “2” here

with “2” and “3” above

Logical sequence altered by the parentheses.

Not work

